Preparation and application for separation of small molecules of a new poly(OVS-co-EDMA) hybrid monolithic column

Fengqing Wang1,2, Aile Wei1,2, Jing Zhao3, Haiyan Liu1,2* , Ligai Bai1,2* , Hongyuan Yan1,2

1. Key Laboratory of Pharmaceutical, College of Pharmaceutical Sciences, Hebei University, Baoding, 071000, P. R. China.
2. Quality Control of Hebei Province, Baoding, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, 071002, P. R. China.
3. Experimental Center of Hebei University, Baoding 071002, P. R. China.

Abstract

A hybrid monolithic column was prepared using octavinyloctasilasesquioxane (OVS) as a monomer, benzoyl peroxide/dimethylacetamide (BPO/DMA) as initiator, ethylene glycol dimethacrylate (EDMA) as cross-linker, 1-dodecanol as porogenic agent and dimethylbenzene as cosolvent. A tidy skeleton, much bigger specific surface area (22.4 m2/g) and lower swelling property of the monolithic column with OVS added than the one without OVS added were determined with Scanning Electron Microscopy (SEM), Nitrogen adsorption/desorption measurements (BET) and swelling test with elute of different concentration of acetonitrile in water. Fourier-transform infrared spectra (FTIR) was taken to characterize the composition of groups. Moreover, a better separation performance for benzene series compounds under reversed phase liquid chromatography (RPLC) mode was obtained using the monolithic columns with OVS added than those without.

Corresponding Author: Haiyan Liu and Ligai Bai, Key Laboratory of Pharmaceutical, College of Pharmaceutical Sciences, Hebei University, Baoding, 071000, P. R. China, Quality Control of Hebei Province, Baoding, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, 071002, P. R. China.

Email: lhy1610@126.com, bailigai@163.com

Keywords: octavinyloctasilasesquioxane (OVS). monolithic column, small molecules, swelling property.

Received December 31 2015; Accepted May 17 2016; Published May 21 2016;
Introduction:

Emerged in 1990s[1], porous monolithic materials have been confirmed to be a good stationary phase for their straightforward fabrication, excellent permeability, high separation efficiency and other unique advantages to be used for separation of small molecules and biological matrix[2-4], especially. Different from short-comings of traditional monolithic columns, the merits of hybrid monolithic columns including wide pH range tolerance, good mechanical stability, easy functionalization and high permeability enhanced its application[5-7]. That’s because of the inorganic and organic components in hybrid polymers being linked together by covalent bonds. Such polymers are in fact molecular composites and are produced most often by the copolymerization of a monomer with an organically functionalized inorganic compound [8]. With those merits mentioned above, hybrid monoliths have been applied in both online separation fields including capillary liquid chromatography (CLC)[9], capillary electrochromatography (CEC)[4,19], etc[10]. However, the process to prepare hybrid monolithic, the tediously condition-sensitive sol-gel and comprehensive polymerization, encumber their development and application [9].

Polyhedral oligomeric silsesquioxanes (POSS), a series of cage-like three-dimensional oligomeric, organosilicon compounds, were used for the preparation of hybrid monoliths with free radical polymerization via “one-pot” process[11,12] instead of the tedious and uncontrollable sol-gel procedure[13,14] in recent years. The periphery consisting of cage frameworks is covalently surrounded by organic groups, such as alkyl, vinyl, ester group, phenyl etc[8]. Many papers about the preparation and application of hybrid monoliths with POSS added have been published. Peng and his coworkers[1], for example, prepared two kinds of monolithic capillary columns with POSS added via photo- and thermally-initiated polymerization. And the POSS had been used to prepare hybrid monolith by Yao and his team members for high performance capillary electro-chromatography (CEC) [4]. Zou et al., prepared several kinds of hybrid monolithic capillary columns with POSS via click reaction, thermal- and photo-initiation for the separation of small molecules [1, 9,12,14,15].

In this study, a facile approach for preparation of hybrid monolithic columns with and without OVS added was adopted via thermal-initiation. Chromatographic assessments and applications were carried out to determine the chromatographic performance of the obtained monolithic columns.

2. Experimental section

2.1. Materials and Instruments

Materials used in the work were AR grade except methanol and acetonitrile, which was HPLC grade. Octavinylotosilasesquioxane (OVS) used in this study was produced from Aladdin Industrial Corporation (Shanghai, China). The reagent including acetonitrile, methanol, dimethylbenzene and 1-dodecanol were bought from Tianjin kerml chemical reagent co., Ltd. (Tianjin, China). Ethylene glycol dimethacrylate (EDMA) was purchased from Acros (New Jersey, USA). Benzoyl peroxide (BPO) and dimethylacetamide (DMA) were bought from Tianjin Guangfu Fine Chemical Research Institute

All chromatography experiments were conducted on two Thermo Unitmate 3000 system (Thermo scientific, USA) equipped with solvent delivery pumps, pump mixers, well-plate autosamplers and UV detectors. Ultrasonic cleaning machine was bought from Kun Shan Ultrasonic Instruments Co., Ltd (Jiangsu, China). Deionized water with an electrical resistivity of 18.25 mΩ/cm was prepared by a Up-pure Deionizer (Chengdu, China), and an automatic potentiometric titrator, which had been calibrated before used, was purchased from Shanghai Grows Precision Instrument Co., Ltd. (Shanghai, China). The freeze dryer was a product of Gold Sim (Gold Sim, USA). The thermostat water bath was tailor-made from Nanjing Startlab Co., Ltd. (Jiangsu, China). The vacuum drying oven with an oil pump was purchased by Shanghai Boxun Industry &Commerce Co., Ltd. (Shanghai, China)

2.2. Preparation of poly(OVS-co-EDMA) monolith column

The preparation was carried out with the method of in-situ polymerization in stainless steel
columns (50x4.6 mm i.d.). A certain amount of OVS was first dissolved in a certain amount of dimethylbenzene (0.30 mL), and followed with the addition of desired amount of crosslinker, porogenic solvent (EDMA and 1-dodecanol). Then with BPO (0.0045 g) added, the mixture was sonicated for 15 min under nitrogen below 30 °C to obtain a homogeneous solution. And finally, with addition of DMA (40 mL) and vortex for 10 seconds, the polymerization mixture was poured in a stainless steel column with stoppers at the both sides to let the polymerization carry on. After being synthesized for 2.5 h at 35 °C in an oven, the obtained monolithic column was connected with the HPLC system and washed with ethanol (0.20 mL/min for 30 min) and methanol (10.00 mL/min for 60 min) to remove 1-dodecanol, dimethylbenzene and other soluble compounds present in the polymeric rod.

2.3. Characterization
2.3.1. Scanning electron microscopy (SEM)
The poly(OVS-co-EDMA) monolith was firstly eluted with methanol for 5h and dried under freezing for 48h. Then it was observed on a JEOL SEM 6700 microscope operating at 10kV.

2.3.2. Fourier-transform infrared spectra (FTIR)
Fourier-transform infrared spectra (FTIR) were recorded by a Varian 640-IR instrument (Varian America) with a resolution of 4 cm⁻¹ for 32 scans over a wave number range of 4000–400 cm⁻¹. The tablets were prepared with the mixture of KBr and samples, both of which were dried under 80 °C for 48h in a vacuum oven.

2.3.3. Nitrogen adsorption/desorption measurements
The detection of specific surface area of the dry bulk monoliths was performed by nitrogen adsorption-desorption on a Micromeritics Tristar II 3020 (Micromeritics, USA). The samples with different amount of OVS were dried under freezing for 48h and then purged on a Micromeritics flow prep 060 (Micromeritics, USA) with nitrogen for 6 h under 50 °C.

3. Result and Discussion
3.1. Optimization for the preparation conditions of monolithic columns
Single factor experiment was introduced for the optimization conditions to prepare poly(OVS-co-EDMA) hybrid monolithic column. With the consideration that the ratio between crosslinker, monomer and porogenic agent representing great affection to the polymer skeleton and also its chromatographic behaviors, several columns were prepared under different ratios between EDMA, OVS and 1-dodecanol illustrated in Table 1. Back pressure was adopted to compare the chromatographic performance of the monolithic column. Firstly, experiments from column A to column E were used to optimize the ratios between crosslinker and porogenic agent (EDMA and 1-dodecanol) ranging from 1:3 to 1:1 with constant bulk volume (1.60 mL). It could be seen that the more 1-dodecanol added, the softer material was obtained. Even though the mixture of column B could polymerize, the OVS precipitated from the mixture leading to an uneven monolith which is useless. This can be explained by much lower solubility of OVS in 1-dodecanol. Under the proper amount of crosslinker and porogenic agent, different amount of OVS (ranging from 0 mg to 40 mg) was added to investigate the effect of OVS to the columns formation. While, comparing the results from column R to column N, the mechanical strength of composite was getting stronger and the back pressure decreased at the beginning and then increased when more and more OVS was added. The phenomenon may be due to the inorganic material enhancing the mechanical properties of hybrid monoliths. The reduction of pressure along column with 20 mg OVS (column P) may because of the disordered agglomerated organic globules (as seen for column R) turned into innerframe structure. In figure 1, the column P possessed not only higher permeability (1.2305x10⁻¹² cm² for column P, 0.9829 x10⁻¹² cm² for column R) but also higher pressure endurance than that of column R. While, except the role in skeleton structure, another function of OVS during polymerization was nucleation. When the amount of OVS added being more than 30mg,
Table 1. Conditions optimization for the preparation of poly(OVS-co-EDMA) hybrid monolithic columns

<table>
<thead>
<tr>
<th>Column</th>
<th>EDMA (ml)</th>
<th>1-Dodecanol (ml)</th>
<th>Dimethylbenzene (ml)</th>
<th>OVPOSS (mg)</th>
<th>BPO/DMA (mg/µl)</th>
<th>Mechanical/Physical properties (s<sup>a</sup>, n<sup>b</sup>, h<sup>c</sup>, d<sup>d</sup>)</th>
<th>Backpressure<sup>e</sup> (bar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.40</td>
<td>1.20</td>
<td>0.30</td>
<td>20</td>
<td></td>
<td>d</td>
<td>x</td>
</tr>
<tr>
<td>B</td>
<td>0.50</td>
<td>1.10</td>
<td>0.30</td>
<td>20</td>
<td></td>
<td>s</td>
<td>x</td>
</tr>
<tr>
<td>C</td>
<td>0.60</td>
<td>1.00</td>
<td>0.30</td>
<td>20</td>
<td></td>
<td>n</td>
<td>7</td>
</tr>
<tr>
<td>D</td>
<td>0.70</td>
<td>0.90</td>
<td>0.30</td>
<td>20</td>
<td></td>
<td>hh</td>
<td>14</td>
</tr>
<tr>
<td>E</td>
<td>0.80</td>
<td>0.80</td>
<td>0.30</td>
<td>20</td>
<td></td>
<td>hhh</td>
<td>19</td>
</tr>
<tr>
<td>F</td>
<td>0.55</td>
<td>1.05</td>
<td>0.30</td>
<td>30</td>
<td></td>
<td>d</td>
<td>x</td>
</tr>
<tr>
<td>G</td>
<td>0.55</td>
<td>1.05</td>
<td>0.30</td>
<td>20</td>
<td></td>
<td>n</td>
<td>8</td>
</tr>
<tr>
<td>H</td>
<td>0.55</td>
<td>1.05</td>
<td>0.30</td>
<td>10</td>
<td></td>
<td>n</td>
<td>7</td>
</tr>
<tr>
<td>I</td>
<td>0.55</td>
<td>1.05</td>
<td>0.30</td>
<td>0</td>
<td></td>
<td>s</td>
<td>x</td>
</tr>
<tr>
<td>J</td>
<td>0.6</td>
<td>1.00</td>
<td>0.30</td>
<td>40</td>
<td></td>
<td>d</td>
<td>x</td>
</tr>
<tr>
<td>K</td>
<td>0.6</td>
<td>1.00</td>
<td>0.30</td>
<td>30</td>
<td></td>
<td>h</td>
<td>9</td>
</tr>
<tr>
<td>L</td>
<td>0.6</td>
<td>1.00</td>
<td>0.30</td>
<td>10</td>
<td></td>
<td>n</td>
<td>7</td>
</tr>
<tr>
<td>M</td>
<td>0.6</td>
<td>1.00</td>
<td>0.30</td>
<td>0</td>
<td></td>
<td>s</td>
<td>x</td>
</tr>
<tr>
<td>N</td>
<td>0.65</td>
<td>0.95</td>
<td>0.30</td>
<td>40</td>
<td></td>
<td>hhh</td>
<td>20</td>
</tr>
<tr>
<td>O</td>
<td>0.65</td>
<td>0.95</td>
<td>0.30</td>
<td>30</td>
<td></td>
<td>hh</td>
<td>15</td>
</tr>
<tr>
<td>P</td>
<td>0.65</td>
<td>0.95</td>
<td>0.30</td>
<td>20</td>
<td></td>
<td>h</td>
<td>11</td>
</tr>
<tr>
<td>Q</td>
<td>0.65</td>
<td>0.95</td>
<td>0.30</td>
<td>10</td>
<td></td>
<td>n</td>
<td>8</td>
</tr>
<tr>
<td>R</td>
<td>0.65</td>
<td>0.95</td>
<td>0.30</td>
<td>0</td>
<td></td>
<td>n</td>
<td>12</td>
</tr>
</tbody>
</table>

^a the Mechanical/physical properties of monolith is soft.

^b the Mechanical/physical properties of monolith is not soft or hard.

^c the Mechanical/physical properties of monolith is hard.

^d deposition of OVS from mixture happened.

^e Back pressure was obtained with methanol as the mobile phase at 1.00 mL/min and temperature at 25 °C.
the nucleation of OVS created smaller size of skeleton and more pyknotic accumulation of monolithic polymer in microscopic size.

Opinions above could be illustrated in figure 2. The effect of increasing the amount of OVS (column R, P, N) was observed using SEM and BET. More morphology was obtained for monolith with OVS (20 mg) than without. Even though larger specific surface area could be observed in column N, the tidy skeleton in proper size of column P was much more suitable for preparation of efficient monolithic column. The auxiliary skeleton observed for column N decreases the uniformity and controllability during the polymerization leading to lower chromatographic performance. The condition of column P will be used for further experiment.

FTIR was used to confirm the group composition in the monolith with and without OVS added. The result was shown in figure 3. The peaks associated with groups are C-H (2990-2958 cm⁻¹), C=O (1690-1729 cm⁻¹), Si-O-Si (1102 cm⁻¹) and –OH (3500 cm⁻¹)[18].

3.2. Swelling properties

In liquid chromatography, the mobile phase can diffuse into and even swell the polymer monolith. It means that the volume and morphology of monolithic column can be different between the monolith in dry and wet state[16].

The swelling properties of the obtained monolithic column with and without OVS added was measured using different acetonitrile-water mixtures as the mobile phase. Thiourea, a non-retained compound for reversed-phase liquid chromatography, was injected to measure the porosity of monolith[18]. The elution volumes of thiourea under different concentration of acetonitrile in water for column P and R were illustrated in figure 4 I curve A and curve B, respectively. The result demonstrated that the elution volumes of thiourea were almost the same (0.5789 mL for column R and 0.5741 mL for column P) when the concentration of acetonitrile was above 25%, during which a classical
reverse phase liquid chromatography (RPLC) has been proved because of the non-retention property of thiourea along the monolith. The porosity of both monolith (69.7% for column R and 69.1% for column P) could be calculated from the elution volume of thiourea. While, a bigger swelling property of column R than

Figure 2. Polymer skeleton and specific surface area of monolithic columns with different amount of OVS tested with SEM and BET.

Figure 3. Difference between monolith with OVS (redline) and without OVS (blue-line) added based on FT-IR spectra.
column P could be seen from the sharp raise and drop appearance in curve C, which was calculated by subtracting curve B from curve A. The trend of curve C in figure 4 was also calculated from curve A and curve B, which were the plots of back pressure with the concentration of acetonitrile in water raising from 0% to 100%. The tendency of both column P and column R were almost the same. The highest back pressure detected for both column R and column P were taken place with 80% acetonitrile in water as the elution. The elution volume of thiourea using 80% acetonitrile was smaller (about 4.1% and 1.5%) than 100% acetonitrile for both column R and column P (the dead volume of the chromatography system was removed). The result means that both columns swelled and the swelling of column P was smaller than the column R. The phenomenon above could be explained by the stronger rigidity of monolith skeleton with OVS than without OVS limited the swelling of polymers.

3.3. Plate height along the flow rate

Plate height of the obtained monolithic column along flow rate was examined with the elute of acetonitrile and water (75/25, v/v) at 25°C. Five compounds (1,2-Diaminobenzene, p-Nitrophenol, (Dichloromethyl) benzene, Naphthalenol, 1-Aminonaphthalene) were used to examine the performance of obtained monolithic column, which is shown in figure 5. Comparing the plate height under different flow rates, the smallest plate height of most compounds were taken place around flow rate from 0.80 to 1.20 mL/min except for 1-Aminonaphthalene, the best chromatographic performance was at the flow rate of 0.60 mL/min. While, taken the separation time into consideration, a shorter time was cost for the flow rate of 1.00 mL/min than the one of 0.80mL/min, it could be seen from figure 6. But the chromatographic performance was almost the same (16800plate/m for 1,2-Diaminobenzene at 0.80mL/min and 16100plate/m at 1.00mL/min). The baseline separation for p-Nitrophenol and (Dichloromethyl) benzene was not achieved, when the flow rate was increased to 1.20mL/min.

Fully consideration above, the flow rate of 1mL/min was taken for the following experiments.
3.4. Application of poly(OVS-co-EDMA) monolithic columns

To compare the chromatographic performance of the home-made monolithic column with OVS with without OVS added, several small molecules including neutral, basic and acidic compounds were used as the test compounds. The eluting sequence of molecules on both columns were: 1,2-Diaminobenzene > p-Nitroaniline > Benzene > 1-Naphthylamine > 4-Chloronitrobenzene > Naphthalene > Diphenyl > Phenanthrene. From figure 7, it could be seen that a much better separation was obtained for the column with OVS added than the one without OVS contended.

4. Conclusion

A new kind of hybrid organic-silica monolithic column was prepared successfully with OVS added as a monomer. Three different polymer skeletons were obtained with different amount of monomer added. The monolith with OVS added showed stronger rigidity. The classical RPLC mode was observed during the experiment of swelling test. Under the optimization conditions, small molecules were separated successfully.

Acknowledgement

The authors would like to gratefully acknowledge financial support received from the National Natural Science Foundation of China (no. 21175031, 21575033, 21175033).
Figure 6. Chromatographic performance of column P under different flow rates (0.80, 1.00 and 1.20mL/min). The compounds are: 1: 1,2-Diaminobenzene, 2: p-Nitrophenol, 3: (Dichloromethyl)benzene, 4: Naphthalenol, 5: 1-Aminonaphthalene.

Figure 7. Small molecules separated via monolithic column with and without OVS added. Compounds were: 1:1,2-Diaminobenzene, 2:p-Nitroaniline, 3:Benzene, 4:1-Naphthylamine, 5:4-Chloronitrobenzene, 6:Naphthalene, 7:Diphenyl, 8:Phenantherene. Experiment conditions were: the elute was a mixture of acetonitrile and water (65/35, v/v), temperature was 25℃ and flow rate was 1.00mL/min.
Natural Science Foundation of Hebei University (no. 2014-05).

Reference

5. Héctor Colón, Xin Zhang, Jessica K Murphy, José G Rivera, and Luis A Colón, 'Allyl-Functionalized Hybrid Silica Monoliths', *Chemical communications*, 22 (2005), 2826-28.

16. Frantisek Sveca, 'Porous Polymer Monoliths: Amazingly Wide Variety of Techniques Enabling Their Preparation', *Journal of Chromatography*. A
